Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 1003608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339347

RESUMEN

As new pathogens emerge, new challenges must be faced. This is no different in infectious disease research, where identifying the best tools available in laboratories to conduct an investigation can, at least initially, be particularly complicated. However, in the context of an emerging virus, such as SARS-CoV-2, which was recently detected in China and has become a global threat to healthcare systems, developing models of infection and pathogenesis is urgently required. Cell-based approaches are crucial to understanding coronavirus infection biology, growth kinetics, and tropism. Usually, laboratory cell lines are the first line in experimental models to study viral pathogenicity and perform assays aimed at screening antiviral compounds which are efficient at blocking the replication of emerging viruses, saving time and resources, reducing the use of experimental animals. However, determining the ideal cell type can be challenging, especially when several researchers have to adapt their studies to specific requirements. This review strives to guide scientists who are venturing into studying SARS-CoV-2 and help them choose the right cellular models. It revisits basic concepts of virology and presents the currently available in vitro models, their advantages and disadvantages, and the known consequences of each choice.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular , China
2.
Viruses ; 14(11)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36366486

RESUMEN

There is currently a need for new rapid viral diagnostic electron microscopy methods. Although the gold standard remains the transmission electron microscopy (TEM) negative staining method for electron microscopic examination of samples containing a virus, difficulties can arise when the virus particle content of the sample that has to be examined is poor. Such samples include supernatants of virus-infected cells that can be difficult to examine, as sometimes only a few virus particles are released in the culture medium upon infection. In addition to TEM, scanning electron microscopy (SEM) can also be used for visualizing virus particles. One advantage of SEM over TEM is its ability to rapidly screen several large specimens, such as microscopy slides. In this study, we investigated this possibility and tested different coating molecules as well as the effect of centrifugation for analyzing SARS-CoV-2-virus-infected cell culture supernatants deposited on microscopy glass slides by SEM. We found that centrifugation of 25XConcanavalinA-coated microscopy glass slides in shell vials provided an improved method for concentrating SARS-CoV-2-virus-infected cell supernatants for virus-like particle detection by SEM.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Microscopía Electrónica de Rastreo , COVID-19/diagnóstico , Microscopía Electrónica de Transmisión , Técnicas de Cultivo de Célula
3.
Front Microbiol ; 13: 1003824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312916

RESUMEN

The SARS-CoV-2 pandemic started in the end of 2019 in Wuhan, China, which highlighted the scenario of frequent cross-species transmission events. From the outbreak possibly initiated by viral spill-over into humans from an animal reservoir, now we face the human host moving globally while interacting with domesticated and peridomestic animals. The emergence of a new virus into the ecosystem leads to selecting forces and species-specific adaptations. The adaptation of SARS-CoV-2 to other animals represents a risk to controlling the dissemination of this coronavirus and the emergence of new variants. Since 2020, several mink farms in Europe and the United States have had SARS-CoV-2 outbreaks with human-mink and mink-human transmission, where the mink-selected variants possibly hold evolutionary concerning advantages. Here we investigated the permissibility of mink lung-derived cells using two cell lines, Mv-1-Lu and ENL-R, against several lineages of SARS-CoV-2, including some classified as variants of concern. The viral release rate and the infectious titers indicate that these cells support infections by different SARS-CoV-2 lineages. The viral production occurs in the first few days after infection with the low viral release by these mink cells, which is often absent for the omicron variant for lung cells. The electron microscopy reveals that during the viral replication cycle, the endomembrane system of the mink-host cell undergoes typical changes while the viral particles are produced, especially in the first days of infection. Therefore, even if limited, mink lung cells may represent a selecting source for SARS-CoV-2 variants, impacting their transmissibility and pathogenicity and making it difficult to control this new coronavirus.

4.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35455442

RESUMEN

Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.

5.
Viruses ; 13(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34834983

RESUMEN

BACKGROUND: Since the beginning of the COVID-19 pandemic, several SARS-CoV-2 variants have sequentially emerged. In France, most cases were due to spike D641G-harbouring viruses that descended initially from the Wuhan strain, then by the variant of B.1.160 lineage we called Marseille-4 since the summer of 2020, which was followed by the Alpha and Beta variants in early 2021, then the Delta variant currently. METHODS: We determined the neutralising antibody (nAb) titres in sera from convalescent individuals previously infected by these four major local variants and from vaccine recipients to the original Wuhan strain and nine variants, including two recent circulating Delta isolates. RESULTS: The results show high inter-individual heterogeneity in nAbs, especially according to the variant tested. The major variations among nAbs are based on the genotype responsible for the infection. Patients previously infected with the beta and B.1.160 variants had the lowest nAb titres. We show that this heterogeneity is well explained by spike protein mutants modelling using in silico approaches. The highest titres were observed in individuals vaccinated with the Pfizer/BioNTech COVID-19 vaccine, even against the delta variant. CONCLUSIONS: Immunity acquired naturally after infection is highly dependent on the infecting variant, and, unexpectedly, mRNA-based vaccine efficacy was shown to be often better than natural immunity in eliciting neutralising antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Antivirales , Prueba Serológica para COVID-19 , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Francia , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Glicoproteína de la Espiga del Coronavirus/química , Eficacia de las Vacunas/estadística & datos numéricos , Células Vero , Adulto Joven
6.
J Clin Med ; 10(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34300178

RESUMEN

A new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19), which emerged in Wuhan, China in December 2019, has spread worldwide. Currently, very few treatments are officially recommended against SARS-CoV-2. Identifying effective, low-cost antiviral drugs with limited side effects that are affordable immediately is urgently needed. Methylene blue, a synthesized thiazine dye, may be a potential antiviral drug. Antiviral activity of methylene blue used alone or in combination with several antimalarial drugs or remdesivir was assessed against infected Vero E6 cells infected with two clinically isolated SARS-CoV-2 strains (IHUMI-3 and IHUMI-6). Effects both on viral entry in the cell and on post-entry were also investigated. After 48 h post-infection, the viral replication was estimated by RT-PCR. The median effective concentration (EC50) and 90% effective concentration (EC90) of methylene blue against IHUMI-3 were 0.41 ± 0.34 µM and 1.85 ± 1.41 µM, respectively; 1.06 ± 0.46 µM and 5.68 ± 1.83 µM against IHUMI-6. Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2 infection in Vero E6 cells as retrieved for hydroxychloroquine. The effects of methylene blue were additive with those of quinine, mefloquine and pyronaridine. The combinations of methylene blue with chloroquine, hydroxychloroquine, desethylamodiaquine, piperaquine, lumefantrine, ferroquine, dihydroartemisinin and remdesivir were antagonist. These results support the potential interest of methylene blue to treat COVID-19.

7.
Front Cell Infect Microbiol ; 11: 639177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178717

RESUMEN

Several comorbidities, including hypertension, have been associated with an increased risk of developing severe disease during SARS-CoV-2 infection. Angiotensin II receptor blockers (ARBs) are currently some of the most widely-used drugs to control blood pressure by acting on the angiotensin II type 1 receptor (AT1R). ARBs have been reported to trigger the modulation of the angiotensin I converting enzyme 2 (ACE2), the receptor used by the virus to penetrate susceptible cells, raising concern that such treatments may promote virus capture and increase their viral load in patients receiving ARBs therapy. In this in vitro study, we reviewed the effect of ARBs on ACE2 and AT1R expression and investigated whether treatment of permissive ACE2+/AT1R+ Vero E6 cells with ARBs alters SARS-CoV-2 replication in vitro in an angiotensin II-free system. After treating the cells with the ARBs, we observed an approximate 50% relative increase in SARS-CoV-2 production in infected Vero E6 cells that correlates with the ARBs-induced up-regulation of ACE2 expression. From this data, we believe that the use of ARBs in hypertensive patients infected by SARS-CoV-2 should be carefully evaluated.


Asunto(s)
Antagonistas de Receptores de Angiotensina , COVID-19 , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antihipertensivos/farmacología , Humanos , Sistema Renina-Angiotensina , SARS-CoV-2
8.
Microorganisms ; 9(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073053

RESUMEN

Despite the development of new diagnostic methods, co-culture, based on sample inoculation of cell monolayers coupled with electron microscopy (EM) observation, remains the gold standard in virology. Indeed, co-culture allows for the study of cell morphology (infected and not infected), the ultrastructure of the inoculated virus, and the different steps of the virus infectious cycle. Most EM methods for studying virus cycles are applied after infected cells are produced in large quantities and detached to obtain a pellet. Here, cell culture was performed in sterilized, collagen-coated single-break strip wells. After one day in culture, cells were infected with SARS-CoV-2. Wells of interest were fixed at different time points, from 2 to 36 h post-infection. Microwave-assisted resin embedding was accomplished directly in the wells in 4 h. Finally, ultra-thin sections were cut directly through the infected-cell monolayers. Our methodology requires, in total, less than four days for preparing and observing cells. Furthermore, by observing undetached infected cell monolayers, we were able to observe new ultrastructural findings, such as cell-cell interactions and baso-apical cellular organization related to the virus infectious cycle. Our innovative methodology thus not only saves time for preparation but also adds precision and new knowledge about viral infection, as shown here for SARS-CoV-2.

9.
Viruses ; 14(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35062227

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quickly spread worldwide following its emergence in Wuhan, China, and hit pandemic levels. Its tremendous incidence favoured the emergence of viral variants. The current genome diversity of SARS-CoV-2 has a clear impact on epidemiology and clinical practice, especially regarding transmission rates and the effectiveness of vaccines. In this study, we evaluated the replication of different SARS-CoV-2 isolates representing different virus genotypes which have been isolated throughout the pandemic. We used three distinct cell lines, including Vero E6 cells originating from monkeys; Caco-2 cells, an intestinal epithelium cell line originating from humans; and Calu-3 cells, a pulmonary epithelium cell line also originating from humans. We used RT-qPCR to replicate different SARS-CoV-2 genotypes by quantifying the virus released in the culture supernatant of infected cells. We found that the different viral isolates replicate similarly in Caco-2 cells, but show very different replicative capacities in Calu-3 cells. This was especially highlighted for the lineages B.1.1.7, B.1.351 and P.1, which are considered to be variants of concern. These results underscore the importance of the evaluation and characterisation of each SARS-CoV-2 isolate in order to establish the replication patterns before performing tests, and of the consideration of the ideal SARS-CoV-2 genotype-cell type pair for each assay.


Asunto(s)
Células Epiteliales/virología , SARS-CoV-2/fisiología , Replicación Viral/fisiología , Animales , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Genotipo , Humanos , Intestinos/citología , Pulmón/citología , Mutación , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Células Vero , Tropismo Viral/fisiología
10.
Clin Microbiol Infect ; 27(1): 128.e1-128.e7, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32979576

RESUMEN

OBJECTIVES: A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the current coronavirus disease 2019 global pandemic. Only a few laboratories routinely isolate the virus, which is because the current co-culture strategy is highly time-consuming and requires a biosafety level 3 laboratory. This work aimed to develop a new high-throughput isolation strategy using novel technologies for rapid and automated isolation of SARS-CoV-2. METHODS: We used an automated microscope based on high-content screening (HCS), and we applied specific image analysis algorithms targeting cytopathic effects of SARS-CoV-2 on Vero E6 cells. A randomized panel of 104 samples, including 72 that tested positive by RT-PCR and 32 that tested negative, were processed with our HCS strategy and were compared with the classical isolation procedure. RESULTS: The isolation rate was 43% (31/72) with both strategies on RT-PCR-positive samples and was correlated with the initial RNA viral load in the samples, in which we obtained a positivity threshold of 27 Ct. Co-culture delays were shorter with the HCS strategy, where 80% (25/31) of the positive samples were recovered by the third day of co-culture, compared with only 26% (8/30) with the classic strategy. Moreover, only the HCS strategy allowed us to recover all the positive samples (31 with HCS versus 27 with classic strategy) after 1 week of co-culture. CONCLUSIONS: This system allows the rapid and automated screening of clinical samples with minimal operator workload, which reduces the risk of contamination and paves the way for future applications in clinical microbiology, such as large-scale drug susceptibility testing.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Animales , Automatización de Laboratorios , Biomarcadores/análisis , COVID-19/virología , Chlorocebus aethiops , Hospitalización , Humanos , Microscopía/métodos , Nasofaringe/virología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , SARS-CoV-2/genética , Manejo de Especímenes/métodos , Células Vero , Carga Viral
11.
Molecules ; 25(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142770

RESUMEN

In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), emerged in Wuhan, China. Despite containment measures, SARS-CoV-2 spread in Asia, Southern Europe, then in America and currently in Africa. Identifying effective antiviral drugs is urgently needed. An efficient approach to drug discovery is to evaluate whether existing approved drugs can be efficient against SARS-CoV-2. Doxycycline, which is a second-generation tetracycline with broad-spectrum antimicrobial, antimalarial and anti-inflammatory activities, showed in vitro activity on Vero E6 cells infected with a clinically isolated SARS-CoV-2 strain (IHUMI-3) with median effective concentration (EC50) of 4.5 ± 2.9 µM, compatible with oral uptake and intravenous administrations. Doxycycline interacted both on SARS-CoV-2 entry and in replication after virus entry. Besides its in vitro antiviral activity against SARS-CoV-2, doxycycline has anti-inflammatory effects by decreasing the expression of various pro-inflammatory cytokines and could prevent co-infections and superinfections due to broad-spectrum antimicrobial activity. Therefore, doxycycline could be a potential partner of COVID-19 therapies. However, these results must be taken with caution regarding the potential use in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results to actual clinical treatment in patients. In vivo evaluation in animal experimental models is required to confirm the antiviral effects of doxycycline on SARS-CoV-2 and more trials of high-risk patients with moderate to severe COVID-19 infections must be initiated.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Doxiciclina/farmacología , Animales , Antibacterianos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Chlorocebus aethiops , Cloroquina/farmacología , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana , SARS-CoV-2 , Células Vero
12.
Int J Antimicrob Agents ; 56(6): 106202, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33075512

RESUMEN

In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. Currently there is no antiviral treatment recommended against SARS-CoV-2. Identifying effective antiviral drugs is urgently required. Methylene blue has already demonstrated in vitro antiviral activity in photodynamic therapy as well as antibacterial, antifungal and antiparasitic activities in non-photodynamic assays. In this study. non-photoactivated methylene blue showed in vitro activity at very low micromolar range with an EC50 (median effective concentration) of 0.30 ± 0.03 µM and an EC90 (90% effective concentration) of 0.75 ± 0.21 µM at a multiplicity of infection (MOI) of 0.25 against SARS-CoV-2 (strain IHUMI-3). The EC50 and EC90 values for methylene blue are lower than those obtained for hydroxychloroquine (1.5 µM and 3.0 µM) and azithromycin (20.1 µM and 41.9 µM). The ratios Cmax/EC50 and Cmax/EC90 in blood for methylene blue were estimated at 10.1 and 4.0, respectively, following oral administration and 33.3 and 13.3 following intravenous administration. Methylene blue EC50 and EC90 values are consistent with concentrations observed in human blood. We propose that methylene blue is a promising drug for treatment of COVID-19. In vivo evaluation in animal experimental models is now required to confirm its antiviral effects on SARS-CoV-2. The potential interest of methylene blue to treat COVID-19 needs to be confirmed by prospective comparative clinical studies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Azul de Metileno/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , SARS-CoV-2/fisiología , Células Vero
13.
Front Microbiol ; 11: 2014, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973730

RESUMEN

Electron microscopy is a powerful tool in the field of microbiology. It has played a key role in the rapid diagnosis of viruses in patient samples and has contributed significantly to the clarification of virus structure and function, helping to guide the public health response to emerging viral infections. In the present study, we used scanning electron microscopy (SEM) to study the infectious cycle of SARS-CoV-2 in Vero E6 cells and we controlled some key findings by classical transmission electronic microscopy (TEM). The replication cycle of the virus was followed from 1 to 36 h post-infection. Our results revealed that SARS-CoV-2 infected the cells through membrane fusion. Particles are formed in the peri-nuclear region from a budding of the endoplasmic reticulum-Golgi apparatus complex into morphogenesis matrix vesicae. New SARS-CoV-2 particles were expelled from the cells, through cell lysis or by fusion of virus containing vacuoles with the cell plasma membrane. Overall, this cycle is highly comparable to that of SARS-CoV. By providing a detailed and complete SARS-CoV-2 infectious cycle, SEM proves to be a very rapid and efficient tool compared to classical TEM.

14.
Travel Med Infect Dis ; 37: 101873, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32916297

RESUMEN

In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. African countries see slower dynamic of COVID-19 cases and deaths. One of the assumptions that may explain this later emergence in Africa, and more particularly in malaria endemic areas, would be the use of antimalarial drugs. We investigated the in vitro antiviral activity against SARS-CoV-2 of several antimalarial drugs. Chloroquine (EC50 = 2.1 µM and EC90 = 3.8 µM), hydroxychloroquine (EC50 = 1.5 µM and EC90 = 3.0 µM), ferroquine (EC50 = 1.5 µM and EC90 = 2.4 µM), desethylamodiaquine (EC50 = 0.52 µM and EC90 = 1.9 µM), mefloquine (EC50 = 1.8 µM and EC90 = 8.1 µM), pyronaridine (EC50 = 0.72 µM and EC90 = 0.75 µM) and quinine (EC50 = 10.7 µM and EC90 = 38.8 µM) showed in vitro antiviral effective activity with IC50 and IC90 compatible with drug oral uptake at doses commonly administered in malaria treatment. The ratio Clung/EC90 ranged from 5 to 59. Lumefantrine, piperaquine and dihydroartemisinin had IC50 and IC90 too high to be compatible with expected plasma concentrations (ratio Cmax/EC90 < 0.05). Based on our results, we would expect that countries which commonly use artesunate-amodiaquine or artesunate-mefloquine report fewer cases and deaths than those using artemether-lumefantrine or dihydroartemisinin-piperaquine. It could be necessary now to compare the antimalarial use and the dynamics of COVID-19 country by country to confirm this hypothesis.


Asunto(s)
Antimaláricos/farmacología , Betacoronavirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero
15.
Int J Infect Dis ; 99: 437-440, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32805422

RESUMEN

OBJECTIVES: At the end of November 2019, a novel coronavirus responsible for respiratory tract infections (COVID-19) emerged in China. Despite drastic containment measures, this virus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread in Asia and Europe. The pandemic is ongoing with a particular hotspot in Southern Europe and America; many studies predicted a similar epidemic in Africa, as is currently seen in Europe and the United States of America. However, reported data have not confirmed these predictions. One of the hypotheses that could explain the later emergence and spread of COVID-19 pandemic in African countries is the use of antimalarial drugs to treat malaria, and specifically, artemisinin-based combination therapy (ACT). METHODS: The antiviral activity of fixed concentrations of ACT at concentrations consistent with those observed in human plasma when ACT is administered at oral doses for uncomplicated malaria treatment was evaluatedin vitro against a clinically isolated SARS-CoV-2 strain (IHUMI-3) in Vero E6 cells. RESULTS: Mefloquine-artesunate exerted the highest antiviral activity with % inhibition of 72.1 ± 18.3 % at expected maximum blood concentration (Cmax) for each ACT drug at doses commonly administered in malaria treatment. All the other combinations, artesunate-amodiaquine, artemether-lumefantrine, artesunate-pyronaridine, or dihydroartemisinin-piperaquine, showed antiviral inhibition in the same ranges (27.1 to 34.1 %). CONCLUSIONS: Antimalarial drugs for which concentration data in the lungs are available are concentrated from 10 to 160 fold more in the lungs than in blood. Thesein vitro results reinforce the hypothesis that antimalarial drugs could be effective as an anti-COVID-19 treatment.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Mefloquina/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Amodiaquina/farmacología , Animales , Antimaláricos/farmacología , Combinación Arteméter y Lumefantrina/farmacología , Artemisininas/farmacología , COVID-19 , Chlorocebus aethiops , Combinación de Medicamentos , Humanos , Malaria/epidemiología , Malaria Falciparum/tratamiento farmacológico , Mefloquina/farmacología , Pandemias , SARS-CoV-2 , Células Vero
16.
Microb Pathog ; 145: 104228, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32344177

RESUMEN

Human coronaviruses SARS-CoV-2 appeared at the end of 2019 and led to a pandemic with high morbidity and mortality. As there are currently no effective drugs targeting this virus, drug repurposing represents a short-term strategy to treat millions of infected patients at low costs. Hydroxychloroquine showed an antiviral effect in vitro. In vivo it showed efficacy, especially when combined with azithromycin in a preliminary clinical trial. Here we demonstrate that the combination of hydroxychloroquine and azithromycin has a synergistic effect in vitro on SARS-CoV-2 at concentrations compatible with that obtained in human lung.


Asunto(s)
Antivirales/farmacología , Azitromicina/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Hidroxicloroquina/farmacología , Neumonía Viral/tratamiento farmacológico , Animales , COVID-19 , Línea Celular , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Humanos , Pandemias , SARS-CoV-2 , Células Vero , Replicación Viral/efectos de los fármacos
17.
Eur J Clin Microbiol Infect Dis ; 39(6): 1059-1061, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32342252

RESUMEN

In a preliminary clinical study, we observed that the combination of hydroxychloroquine and azithromycin was effective against SARS-CoV-2 by shortening the duration of viral load in Covid-19 patients. It is of paramount importance to define when a treated patient can be considered as no longer contagious. Correlation between successful isolation of virus in cell culture and Ct value of quantitative RT-PCR targeting E gene suggests that patients with Ct above 33-34 using our RT-PCR system are not contagious and thus can be discharged from hospital care or strict confinement for non-hospitalized patients.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Alta del Paciente , Neumonía Viral/diagnóstico , Neumonía Viral/virología , ARN Viral/análisis , Carga Viral , Animales , Betacoronavirus/aislamiento & purificación , COVID-19 , Chlorocebus aethiops , Francia , Humanos , Pandemias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Manejo de Especímenes/normas , Células Vero
18.
J Clin Microbiol ; 58(5)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32132188

RESUMEN

Q fever, caused by Coxiella burnetii, is a worldwide zoonotic disease that may cause severe forms in humans and requires a specific and prolonged antibiotic treatment. Although current serological and molecular detection tools allow a reliable diagnosis of the disease, culture of C. burnetii strains is mandatory to assess their susceptibility to antibiotics and sequence their genome in order to optimize patient management and epidemiological studies. However, cultivating this fastidious microorganism is difficult and restricted to reference centers, as it requires biosafety level 3 laboratories and relies on cell culture performed by experienced technicians. In addition, the culture yield is low, which results in a small number of isolates being available. In this work, we developed a novel high-content screening (HCS) isolation strategy based on optimized high-throughput cell culture and automated microscopic detection of infected cells with specifically designed algorithms targeting cytopathic effects. This method was more efficient than the shell vial assay, at the level of time dependency, when applied to both frozen specimens (7 isolates recovered by HCS only, sensitivity 91% versus 78% for shell vial) and fresh samples (1 additional isolate using HCS, sensitivity 7% versus 5% for shell vial), for which most strains were recovered more rapidly with the new technique. In addition, detecting positive cultures by an automated microscope reduced the need for expertise and saved 24% of technician working time. Application of HCS to antibiotic susceptibility testing of 12 strains demonstrated that it was as efficient as the standard procedure that combines shell vial culture and quantitative PCR.


Asunto(s)
Coxiella burnetii , Fiebre Q , Antibacterianos/farmacología , Coxiella burnetii/genética , Humanos , Fiebre Q/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Emerg Infect Dis ; 25(12): 2197-2204, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31742503

RESUMEN

Zoonotic transmission of parapoxvirus from animals to humans has been reported; clinical manifestations are skin lesions on the fingers and hands after contact with infected animals. We report a human infection clinically suspected as being ecthyma contagiosum. The patient, a 65-year-old woman, had 3 nodules on her hands. She reported contact with a sheep during the Aïd-el-Fitr festival in France during 2017. We isolated the parapoxvirus orf virus from these nodules by using a nonconventional cell and sequenced the orf genome. We identified a novel orf virus genome and compared it with genomes of other orf viruses. More research is needed on the genus Parapoxvirus to understand worldwide distribution of and infection by orf virus, especially transmission between goats and sheep.


Asunto(s)
Ectima Contagioso/diagnóstico , Ectima Contagioso/virología , Genoma Viral , Virus del Orf/genética , Biopsia , ADN Viral , Ectima Contagioso/epidemiología , Ectima Contagioso/historia , Francia/epidemiología , Historia del Siglo XXI , Humanos , Virus del Orf/clasificación , Virus del Orf/aislamiento & purificación , Virus del Orf/ultraestructura , Filogenia , Reacción en Cadena de la Polimerasa , Vigilancia de la Población , Secuenciación Completa del Genoma
20.
Emerg Infect Dis ; 25(2): 212-219, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30666929

RESUMEN

We report a case of atypical cowpox virus infection in France in 2016. The patient sought care for thoracic lesions after injury from the sharp end of a metallic guardrail previously stored in the ground. We isolated a cowpox virus from the lesions and sequenced its whole genome. The patient reported that he had been previously vaccinated against smallpox. We describe an alternative route of cowpox virus infection and raise questions about the immunological status of smallpox-vaccinated patients for circulating orthopoxviruses.


Asunto(s)
Virus de la Viruela Vacuna/inmunología , Viruela/epidemiología , Viruela/virología , Animales , Línea Celular , Biología Computacional/métodos , Viruela Vacuna/inmunología , Viruela Vacuna/patología , Viruela Vacuna/virología , Virus de la Viruela Vacuna/clasificación , Virus de la Viruela Vacuna/genética , Virus de la Viruela Vacuna/aislamiento & purificación , Francia/epidemiología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , Viruela/prevención & control , Vacuna contra Viruela/inmunología , Vacunación , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...